首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5640篇
  免费   664篇
  国内免费   325篇
测绘学   1059篇
大气科学   287篇
地球物理   1224篇
地质学   1506篇
海洋学   1102篇
天文学   13篇
综合类   485篇
自然地理   953篇
  2024年   8篇
  2023年   22篇
  2022年   75篇
  2021年   183篇
  2020年   191篇
  2019年   164篇
  2018年   153篇
  2017年   295篇
  2016年   234篇
  2015年   273篇
  2014年   329篇
  2013年   445篇
  2012年   325篇
  2011年   372篇
  2010年   323篇
  2009年   321篇
  2008年   394篇
  2007年   372篇
  2006年   359篇
  2005年   297篇
  2004年   251篇
  2003年   185篇
  2002年   200篇
  2001年   161篇
  2000年   123篇
  1999年   136篇
  1998年   87篇
  1997年   76篇
  1996年   37篇
  1995年   49篇
  1994年   36篇
  1993年   31篇
  1992年   20篇
  1991年   15篇
  1990年   17篇
  1989年   11篇
  1988年   17篇
  1987年   10篇
  1986年   4篇
  1985年   7篇
  1984年   9篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1980年   1篇
  1971年   1篇
排序方式: 共有6629条查询结果,搜索用时 179 毫秒
1.
Natural Resource Management (NRM) is often conducted as a partnership between government and citizens. In Australia, government agencies formulate policy and fund implementation that may be delivered on-ground by community groups (such as Landcare). Since the late 1980s, over AUS$8b of Commonwealth investment has been made in NRM. However, quantitative evidence of environmental improvements is lacking. The NRM Planning Portal has been developed to (1) provide an online spatial information system for sharing Landcare and agency data; and (2) to facilitate NRM priority setting at local and regional planning scales. While the project successfully federates Landcare NRM activity data, challenges included (1) unstructured, non-standardized data, meaning that quantitative reporting against strategic objectives is not currently possible, and (2) a lack of common understanding about the value proposition for adopting the portal approach. Demonstrating the benefit of technology adoption is a key lesson for digital NRM planning.  相似文献   
2.
Few long-term studies have explored how intensively managed short rotation forest plantations interact with climate variability. We examine how prolonged severe drought and forest operations affect runoff in 11 experimental catchments on private corporate forest land near Nacimiento in south central Chile over the period 2008–2019. The catchments (7.7–414 ha) contain forest plantations of exotic fast-growing species (Pinus radiata, Eucalyptus spp.) at various stages of growth in a Mediterranean climate (mean long-term annual rainfall = 1381 mm). Since 2010, a drought, unprecedented in recent history, has reduced rainfall at Nacimiento by 20%, relative to the long-term mean. Pre-drought runoff ratios were <0.2 under 8-year-old Eucalyptus; >0.4 under 21-year-old Radiata pine and >0.8 where herbicide treatments had controlled vegetation for 2 years in 38% of the catchment area. Early in the study period, clearcutting of Radiata pine (85%–95% of catchment area) increased streamflow by 150 mm as compared with the year before harvest, while clearcutting and partial cuts of Eucalyptus did not increase streamflow. During 2008–2019, the combination of emerging drought and forestry treatments (replanting with Eucalyptus after clearcutting of Radiata pine and Eucalyptus) reduced streamflow by 400–500 mm, and regeneration of previously herbicide-treated vegetation combined with growth of Eucalyptus plantations reduced streamflow by 1125 mm (87% of mean annual precipitation 2010–2019). These results from one of the most comprehensive forest catchment studies in the world on private industrial forest land indicate that multiple decades of forest management have reduced deep soil moisture reservoirs. This effect has been exacerbated by drought and conversion from Radiata pine to Eucalyptus, apparently largely eliminating subsurface supply to streamflow. The findings reveal tradeoffs between wood production and water supply, provide lessons for adapting forest management to the projected future drier climate in Chile, and underscore the need for continued experimental work in managed forest plantations.  相似文献   
3.
When the observation of small headwater catchments in the pre-Alpine Alptal valley (central Switzerland) started in the late 1960s, the researchers were mainly interested in questions related to floods and forest management. Investigations of geomorphological processes in the steep torrent channels followed in the 1980s, along with detailed observations of biogeochemical and ecohydrological processes in individual forest stands. More recently, research in the Alptal has addressed the impacts of climate change on water supply and runoff generation. In this article, we describe, for the first time, the evolution of catchment research at Alptal, and present new analyses of long-term trends and short-term hydrologic behaviour. Hydrometeorological time series from the past 50 years show substantial interannual variability, but only minimal long-term trends, except for the ~2°C increase in mean annual air temperature over the 50-year period, and a corresponding shift towards earlier snowmelt. Similar to previous studies in larger Alpine catchments, the decadal variations in mean annual runoff in Alptal's small research catchments reflect the long-term variability in annual precipitation. In the Alptal valley, the most evident hydrological trends were observed in late spring and are related to the substantial change in the duration of the snow cover. Streamflow and water quality are highly variable within and between hydrological events, suggesting rapid shifts in flow pathways and mixing, as well as changing connectivity of runoff-generating areas. This overview illustrates how catchment research in the Alptal has evolved in response to changing societal concerns and emerging scientific questions.  相似文献   
4.
Understanding changes in evapotranspiration during forest regrowth is essential to predict changes of stream runoff and recovery after forest cutting. Canopy interception (Ic) is an important component of evapotranspiration, however Ic changes and the impact on stream runoff during regrowth after cutting remains unclear due to limited observations. The objective of this study was to examine the effects of Ic changes on long-term stream runoff in a regrowth Japanese cedar and Japanese cypress forest following clear-cutting. This study was conducted in two 1-ha paired headwater catchments at Fukuroyamasawa Experimental Watershed in Japan. The catchments were 100% covered by Japanese coniferous plantation forest, one of which was 100% clear-cut in 1999 when the forest was 70 years old. In the treated catchment, annual runoff increased by 301 mm/year (14% of precipitation) the year following clear-cutting, and remained 185 mm/year (7.9% of precipitation) higher in the young regrowth forest for 12–14 years compared to the estimated runoff assuming no clear-cutting. The Ic change was −358 mm/year (17% of precipitation) after cutting and was −168 mm/year (6.7% of precipitation) in the 12–14 years old regrowth forest compared to the observed Ic during the pre-cutting period. Stream runoff increased in all seasons, and the Ic change was the main fraction of evapotranspiration change in all seasons throughout the observation period. These results suggest that the change in Ic accounted for most of the runoff response following forest cutting and the subsequent runoff recovery in this coniferous forest.  相似文献   
5.
以Visual Studio 2012为平台,利用ArcGIS Engine强大的空间分析功能,以C#为开发语言结合第三方插件设计开发海域定级决策子系统,实现了不同用海方式海域的自动化定级,对海域定级基础数据、过程数据和结果数据进行综合管理,构建了一个具有一定实用价值的海域定级信息管理系统原型;此外,利用WebGIS将海域定级决策子系统分析生成的结果数据发布成服务,实现海域定级信息共享子系统。本研究为海域定级提供智能化平台,提高对海域定级及评估效率,有利于海洋可持续发展。  相似文献   
6.
The variability of rainfall-dependent streamflow at catchment scale modulates many ecosystem processes in wet temperate forests. Runoff in small mountain catchments is characterized by a quick response to rainfall pulses which affects biogeochemical fluxes to all downstream systems. In wet-temperate climates, water erosion is the most important natural factor driving downstream soil and nutrient losses from upland ecosystems. Most hydrochemical studies have focused on water flux measurements at hourly scales, along with weekly or monthly samples for water chemistry. Here, we assessed how water and element flows from broad-leaved, evergreen forested catchments in southwestern South America, are influenced by different successional stages, quantifying runoff, sediment transport and nutrient fluxes during hourly rainfall events of different intensities. Hydrograph comparisons among different successional stages indicated that forested catchments differed in their responses to high intensity rainfall, with greater runoff in areas covered by secondary forests (SF), compared to old-growth forest cover (OG) and dense scrub vegetation (CH). Further, throughfall water was greatly nutrient enriched for all forest types. Suspended sediment loads varied between successional stages. SF catchments exported 455 kg of sediments per ha, followed by OG with 91 kg/ha and CH with 14 kg/ha, corresponding to 11 rainfall events measured from December 2013 to April 2014. Total nitrogen (TN) and phosphorus (TP) concentrations in stream water also varied with rainfall intensity. In seven rainfall events sampled during the study period, CH catchments exported less nutrients (46 kg/ha TN and 7 kg/ha TP) than SF catchments (718 kg/ha TN and 107 kg/ha TP), while OG catchments exported intermediate sediment loads (201 kg/ha TN and 23 kg/ha TP). Further, we found significant effects of successional stage attributes (vegetation structure and soil physical properties) and catchment morphometry on runoff and sediment concentrations, and greater nutrients retention in OG and CH catchments. We conclude that in these southern hemisphere, broad-leaved evergreen temperate forests, hydrological processes are driven by multiple interacting phenomena, including climate, vegetation, soils, topography, and disturbance history.  相似文献   
7.
Here, we describe a methodology for quantifying the spawning habitat of īnanga (Galaxias maculatus), a protected native fish species. Our approach is demonstrated with a survey of the Heathcote/ōpāwaho following the Canterbury earthquakes that produced unexpected findings. Spawning habitat was detected over a 2.5?km reach and the area occupied by spawning sites (75m2) was much larger than in previous records (ca.?21m2). Sites dominated by the invasive Phalaris arundinaceae were found to support high egg numbers. Spawning has not previously been recorded on this species and it is identified in the literature as a threat to spawning habitat. Considerable spatio-temporal variation was also detected in the location of spawning sites and pattern of egg production. Together, these aspects illustrate the need for a comprehensive survey methodology to reliably quantify spawning habitat. The Heathcote/ōpāwaho example shows the utility of our census approach for achieving this, and supporting habitat conservation objectives.  相似文献   
8.
避难场所可达性是指避难场所与受灾居民之间的通达性,即灾害发生时,避难人员通过避难疏散通道到达避难场所的难易程度,是评价避难场所布局合理性的重要指标。本研究结合高斯两步移动搜寻法和网络分析法,从供需双向出发对村镇地区避难场所进行可达性分析。2种方法的结合,既充分考虑了需求点与设施点的相互作用,又充分考虑了设施点的吸引力随距离的衰减关系,并基于实际道路,以步行疏散时间作为搜索半径,降低了传统研究中因忽略供需间相互作用及实际距离而引起的可达性结果的误差。最后,以神农架松柏镇区为例,验证该方法的实际应用价值。结果表明,该方法能够有效测定村镇地区避难场所的空间可达性,同时,基于GIS软件可以直观地揭示研究区域内避难场所可达性空间分布差异。该方法可为制定科学的村镇防灾减灾规划提供方法支持。  相似文献   
9.
随着海岛遥感影像数据的不断积累,传统数据存储管理方法越来越难以满足需求。针对上述问题,利用云存储技术对海岛影像数据进行分块组织,建立分布式海岛影像数据集,并在优化数据存储的同时,设计了一套海岛信息多形式展示平台。实现了信息检索、数据传输与审核、分析评价、成果展示和共享等功能。  相似文献   
10.
The estimation of hydrologic transit times in a catchment provides insights into the integrated effects of water storage, mixing dynamics, and runoff generation processes. There has been limited effort to estimate transit times in southern boreal Precambrian Shield landscapes, which are characteristically heterogeneous with surface cover including till, thin soils, bedrock outcrops, and depressional wetland features that play contrasting hydrologic roles. This study presents approximately 3.5 years of precipitation and streamflow water isotope data and estimates mean transit times (MTTs) and the young water fraction (py) across six small catchments in the Muskoka-Haliburton region of south-central Ontario. The main objectives were to define a typical range of MTTs for headwater catchments in this region and to identify landscape variables that best explain differences in MTTs/py using airborne light detection and ranging and digital terrain analysis. Of the transit time distributions, the two parallel linear reservoir and gamma distributions best describe the hydrology of these catchments, particularly because of their ability to capture more extreme changes related to events such as snowmelt. The estimated MTTs, regardless of the modelling approach or distribution used, are positively associated with the percent wetland area and negatively with mean slope in the catchments. In this landscape, low-gradient features such as wetlands increase catchment scale water storage when antecedent conditions are dryer and decrease transit times when there is a moisture surplus, which plausibly explains the increases in MTTs and mean annual runoff from catchments with significant coverage of these landscape features.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号